Nanoscale structure of protamine/DNA complexes for gene delivery

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of nanoscale structure in LAT-based signaling complexes.

The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) loca...

متن کامل

Optimization of conditions for gene delivery system based on PEI

Objective(s): PEI based nanoparticle (NP) due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of ...

متن کامل

PEGylated quaternized copolymer/DNA complexes for gene delivery.

The aim of this study was to improve the colloidal stability, decrease unspecific interactions with cells and blood components of a novel gene delivery system composed of epsilon-caprolactone and quaternized epsilon-caprolactone. For this purpose, diblock 50/50 copolymer was used to generate complexes with DNA by either the solvent evaporation technique and by dialysis. The size, surface charge...

متن کامل

Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of ...

متن کامل

Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain.

The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a "knot" structured cationic polymer, where single ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2013

ISSN: 0003-6951,1077-3118

DOI: 10.1063/1.4790588